(AstroSat Calibration Meeting, IUCAA, Aug-2022)

Relative orientations of the detector-axes

Swarna Kanti Ghosh

To remind : Schematic configuration of the 3 channels (FUV / NUV / VIS) of UVIT

Channels

Locations of the Detectors -

VIS

NUV

Projected orientations of the UVIT detectors on sky (with reference to spacecraft axes)

The 3 Detectors of UVIT (X-Y axes for FUV, NUV & VIS) are NOT aligned parallel to each other, but subtend *NOMINALLY fixed relative angles*

between them as per their mechanical mountings on the spacecraft structure

Need for knowledge about 'Relative orientation'

 Instantaneous orientation of individual Detector's axes (as projected) on sky needed to transform to astronomical coordinate system

(UV photon centroid measured in X-Y system of electronic sensor => RA-Dec);

- these angles are time dependent (depend on spacecraft's ROLL angle, which undergoes slow systematic changes & disturbances / jitter);
- Spacecraft's instantaneous aspect (Roll_ROT, Roll_RA, Roll_DEC) info need further refinement (=> through Astrometry);
- nominal drift tracking is carried out using VIS images,
 > hence need RELATIVE angles (VIS-NUV, VIS-FUV) of orientation to translate & apply drift corrections to respective UV channels;

To retain option of *drift tracking using selected UV channel*,

Level-2 pipeline used a modular design to implement this functionality :

=> Use of nominal spacecraft coordinate system (ROLL, YAW, PITCH : R-Y-P) as intermediary

[drift-tracking-channel's "X-Y-theta" => "R-Y-P" (VIS / NUV / FUV)

"R-Y-P" => science-UV-channel's "X-Y-theta"] (NUV / FUV)

Implemented using a set of three 2x2 rotation matrices : 'RPY_TO_XYTHETA_FUV', 'RPY_TO_XYTHETA_NUV' & 'RPY_TO_XYTHETA_VIS' & their inverses;

[In addition, Plate Scales of individual channels are needed.]

Corresponding directly observables equations connecting X-Y of channels :

e.g.

```
dX_FUV = -0.85093 * dX_VIS + 0.56645 * dY_VIS
dY_FUV = 0.56645 * dX_VIS - 0.85093 * dY_VIS
```

... etc

Calibration corresponding to Relative Time Alignment of channels :

- extracted drift is a time series which is interpolated to the time grid of UV frames for applying corrections;
- despite use of a single MASTER CLOCK for all channels, systematic relative time shifts get introduced due to scheme of on board time stamping of frames

[depend only on selected frame Read Out Rates & Stacking option]

A) Calibrations from measurements carried out on ground

Lab test setup for finding orientation of Detector axes & Plate Scale

Telescope- Filter	Movement of spot in Pixels per arcsec of rotation				Plate sale on Yaw	Plate sale on Pitch
	On Yaw		On Pitch		(arc	(arc
	X-Pix	Y-Pix	X-Pix	Y-Pix	Sec/Pixel)	Sec/Pixel)
FUV- Caf2	0.002	0.2996	0.2997	0.0001	3.34	3.34
NUV-Silica	0.1571	-0.2554	0.2554	0.1586	3.34	3.33
NUV-B15	0.1567	-0.2546	0.2540	0.1577	3.34	3.34
VIS-Bk7	0.1719	0.2494	0.2500	- 0.1675	3.30	3.32

Orientation of Detector axes vis-a-vis Spacecraft system

Angle accuracy targeted in lab : < 30 arc-min ; Actual difference with final In-Orbit values < 20 arc-min

Plate Scale accuracy achieved in lab : ~ 0.3%

B) In-orbit measurements during Performance Verification (PV) phase

- distribution of X / Y centroids for selected UV bright stars;
- final processed image quality (FWHM of PSF) across FoV (parameters tweaked following an iterative scheme)

Final angles between +Y axis of Detector with respect to Spacecraft -YAW (CCW +ve) :

FUV : +0.483 deg.; NUV : +31.515 deg.; VIS : +34.134 deg.

Activities currently in progress :

Goals -

- improvements in Absolute Aspect of Image products (for each individual Episode & final combined multi-Episode products)
- near 100% Images with Astrometric corrections
- improved precision of Astrometry
- near 100% success in combining multiple Episodes for all sky fields (beneficial for faint fields devoid of brighter UV stars)

Utility for other Instruments (e.g. SXT) -

- time series with very precise (< 1 arc-sec) spacecraft aspect (R-Y-P)

(converting shifts in RYP to SXT's CCD axes; stacking CCD frames; ...)

WHAT IS NEW ?

Important change of strategy :

 use optical stars from drift corrected stacked VIS image for each Episode (instead of currently used detected UV stars)

for :

i) aligning individual Episodes for multi-Episode products

ii) final Astrometry

Implementation -

- Utilize currently available products & by-products from the L2 pipeline (with latest upgrades to address some 'weakness'-es discovered more recently; "v7")
- Develop fresh software

#2

Thank you for your attention